On Harary index

Bo Zhou • Xiaochun Cai • Nenad Trinajstić

Received: 26 October 2007 / Accepted: 26 November 2007 / Published online: 24 January 2008
© Springer Science+Business Media, LLC 2008

Abstract

We report lower and upper bounds for the Harary index of a connected (molecular) graph, and, in particular, upper bounds of triangle- and quadrangle-free graphs. We also give the Nordhaus-Gaddum-type result for the Harary index.

Keywords Harary index • Harary matrix • Wiener index • Triangle-free graphs • Quandrangle-free graphs

1 Introduction

The Harary index of a molecular graph G, denoted by $\mathrm{H}(G)$, has been introduced independently in this Journal by Plavšić et al. [1] and by Ivanciuc et al. [2] in 1993 for the characterization of molecular graphs. It has been named by Plavšić et al. [1] the Harary index in honour of Professor Frank Harary on the occasion of his 70th birthday. Ivanciuc et al. [2] called it initially the reciprocal distance sum index, but later they also adopted the suggested name [3]. Nowadays the name Harary index is generally accepted (e.g., [4]).

[^0]The Harary index is defined as the half-sum of the elements in the reciprocal distance matrix, also called the Harary matrix [5]. This definition parallels the Hosoya definition of the Wiener index as the half-sum of the elements in the distance matrix [6]. The motivation for introduction of the Harary index was pragmatic-the aim was to design a distance index differing from the Wiener index [7] in that the contributions to it from the distant atoms in a molecule should be much smaller than from near atoms, since in many instances the distant atoms influence each other much less than near atoms.

A few years after the two initial publications on Harary index, it has been extended to heterosystems [8] and the hyper-Harary index was introduced [9]. Its modification has also been proposed [10]. The Harary index and related molecular descriptors have shown a modest success in structure-property correlations [11-15], but their use in combination with other molecular descriptors improves the correlations (e.g., [16]). The Harary index has a number of interesting properties (e.g., [8]). In this article, in continuation of our studies on the properties of the Harary index, we provide its lower and upper bounds of G, and also give the Nordhaus-Gaddum-type result [17] for it.

2 Preliminaries

We consider simple (molecular) graphs, i.e., graphs without multiple edges and loops [18]. Let G be a connected graph with the vertex-set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For $v_{i} \in V(G), \Gamma\left(v_{i}\right)$ denotes the set of its (first) neighbors in G and the degree of v_{i} is $\delta_{i}=\left|\Gamma\left(v_{i}\right)\right|$. The term $\sum_{i=1}^{n} \delta_{i}^{2}$ is known as the first Zagreb index of G, denoted by $\mathrm{M}_{1}(G)$ [19-23].

The distance matrix \mathbf{D} of G is an $n \times n$ matrix $\left(\mathbf{D}_{i j}\right)$ such that $\mathbf{D}_{i j}$ is just the distance (i.e., the number of edges of a shortest path) between the vertices v_{i} and v_{j} in G [5], denoted by $d\left(v_{i}, v_{j} \mid G\right)$. The reciprocal distance matrix $\mathbf{R D}$ of G is an $n \times n$ matrix $\left(\mathbf{R D}_{i j}\right)$ such that [5]

$$
\mathbf{R D}_{i j}= \begin{cases}\frac{1}{\mathbf{D}_{i j}} & \text { if } i \neq j \\ 0 & \text { if } i=j\end{cases}
$$

Recall the Hosoya definition of the Wiener index [6] of G, denoted by $\mathrm{W}(G)$,

$$
\mathrm{W}(G)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{D}_{i j}=\sum_{i<j} \mathbf{D}_{i j} .
$$

The Haray index $\mathrm{H}(G)$ is defined in the similar fashion [1,2]

$$
\mathbf{H}(G)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{R D}_{i j}=\sum_{i<j} \mathbf{R D}_{i j}
$$

Let P_{n} and S_{n} be respectively the path and the star with n vertices. Then [24] for any tree T with n vertices, $\mathrm{H}\left(P_{n}\right) \leq \mathrm{H}(T) \leq \mathrm{H}\left(S_{n}\right)$ with left (right, respectively) equality if and only if $T=P_{n}\left(T=S_{n}\right.$, respectively $)$. Let K_{n} be the complete graph with n vertices.

3 Bounds for the Harary index

First we give lower and upper bounds for the Harary index in terms of the number of vertices and the number of edges.

Proposition 1 Let G be a connected graph with $n \geq 2$ vertices. Then

$$
\begin{equation*}
1+n \sum_{k=2}^{n-1} \frac{1}{k} \leq \mathrm{H}(G) \leq \frac{n(n-1)}{2} \tag{1}
\end{equation*}
$$

with left (right, respectively) equality if and only if $G=P_{n}$ ($G=K_{n}$, respectively).
Proof It is easily seen that adding an edge to G will increase the Harary index. Thus, if $\mathrm{H}(G)$ is maximum then G is the complete graph, and if $\mathrm{H}(G)$ is minimum then G is a tree. Note that $\mathrm{H}\left(K_{n}\right)=\frac{n(n-1)}{2}$ and $\mathrm{H}\left(P_{n}\right)=\sum_{k=1}^{n-1} \frac{n-k}{k}=1+n \sum_{k=2}^{n-1} \frac{1}{k}$. Thus, the right inequality in (1) follows and equality holds if and only if $G=K_{n}$, and by Gutman's result [24] mentioned above, the left inequality in (1) follows and equality holds if and only if $G=P_{n}$.

Proposition 2 Let G be a connected graph with $n \geq 2$ vertices and m edges. Then

$$
\begin{equation*}
\mathrm{H}\left(P_{n}\right)+\frac{m-n+1}{2} \leq \mathrm{H}(G) \leq \frac{n(n-1)}{4}+\frac{m}{2} \tag{2}
\end{equation*}
$$

with left (right, respectively) equality if and only if $G=P_{n}$ or K_{3} (G has diameter at most 2, respectively).

Proof Since there are $\binom{n}{2}=\frac{n(n-1)}{2}$ vertex pairs (at distance at least one) and the number of vertex pairs at distance one is m, we have

$$
\mathrm{H}(G) \leq m+\frac{1}{2}\left[\frac{n(n-1)}{2}-m\right]
$$

with equality if and only if G has diameter at most 2 .
If $m=n-1$, then by Proposition 1, the left equality in (2) holds. Suppose that $m \geq n$. Note that for any connected subgraph G^{\prime} of G obtained by deleting an edge $v_{s} v_{t}$ from G, we have $\mathrm{H}(G) \geq \mathrm{H}\left(G^{\prime}\right)+1-\frac{1}{2}=\mathrm{H}\left(G^{\prime}\right)+\frac{1}{2}$ with equality if and only if $d\left(v_{s}, v_{t} \mid G^{\prime}\right)=2$ and $d\left(v_{i}, v_{j} \mid G^{\prime}\right)=d\left(v_{i}, v_{j} \mid G\right)$ for any pair of vertices $\left\{v_{i}, v_{j}\right\}$ different from $\left\{v_{s}, v_{t}\right\}$.

Let T be a spanning tree [25] of G. Then T can be obtained from G by deleting $m-n+1$ edges, say e_{1}, \ldots, e_{m-n+1}, of G outside T. Let $G_{k}=G_{k-1}-e_{k}$ for $k=1, \ldots, m-n+1$, where $G_{0}=G$ and $G_{m-n+1}=T$. Then $\mathrm{H}\left(G_{k-1}\right) \geq \mathrm{H}\left(G_{k}\right)+\frac{1}{2}$ for $k=1, \ldots, m-n+1$, and so we have $\mathrm{H}\left(G_{0}\right) \geq \mathrm{H}\left(G_{m-n+1}\right)+(m-n+1) \cdot \frac{1}{2}$, i.e., $\mathrm{H}(G) \geq \mathrm{H}(T)+\frac{m-n+1}{2}$. By Proposition $1, \mathrm{H}(T) \geq \mathrm{H}\left(P_{n}\right)$. Thus the left inequality in (2) holds. Suppose that left equality holds in (2). Then $T=P_{n}$ and we can add an edge between two vertices, say $v_{s_{0}}, v_{t_{0}}$, of distance two in $T=P_{n}$ to form G_{m-n} such that $d\left(v_{i}, v_{j} \mid T\right)=d\left(v_{i}, v_{j} \mid G_{m-n}\right)$ for any pair of vertices $\left\{v_{i}, v_{j}\right\}$ different from $\left\{v_{s_{0}}, v_{t_{0}}\right\}$. This is only possible if $n=3$. Thus $G=K_{3}$. Conversely, it is easily seen that if $G=P_{n}$ or K_{3}, then the left equality holds in (2).

Now we consider upper bounds for the Harary index of triangle- and quadranglefree connected graphs.
Proposition 3 Let G be a triangle- and quadrangle-free connected graph with $n \geq 2$ vertices and m edges. Then

$$
\begin{equation*}
\mathrm{H}(G) \leq \frac{n(n-1)}{6}+\frac{m}{2}+\frac{1}{12} \mathrm{M}_{1}(G) \tag{3}
\end{equation*}
$$

with equality if and only if G has diameter at most 3 .
Proof Note that there are $\frac{n(n-1)}{2}$ vertex pairs (at distance at least one) and the number of vertex pairs at distance one is m. Since G is triangle- and quadrangle-free, the number of vertex pairs at distance two is $\frac{1}{2} \mathrm{M}_{1}(G)-m$ (see [22]). Thus

$$
\begin{aligned}
\mathrm{H}(G) & \leq m+\frac{1}{2}\left[\frac{1}{2} \mathrm{M}_{1}(G)-m\right]+\frac{1}{3}\left[\frac{n(n-1)}{2}-\frac{1}{2} \mathrm{M}_{1}(G)\right] \\
& =\frac{n(n-1)}{6}+\frac{m}{2}+\frac{1}{12} \mathrm{M}_{1}(G)
\end{aligned}
$$

with equality if and only if G has diameter at most 3 .
Corollary 4 Let G be a triangle- and quadrangle-free connected graph with $n \geq 2$ vertices and m edges. Then

$$
\begin{equation*}
\mathrm{H}(G) \leq \frac{n(n-1)}{4}+\frac{m}{2} \tag{4}
\end{equation*}
$$

with equality if and only if G is the star or a Moore graph of diameter 2 . There are at most four Moore graphs of diameter 2 [26]: pentagon, Petersen graph, Hoffman-Singleton graph, and possibly a 57-regular graph with 3250 vertices (its existence is still an open problem).
Proof It has been shown in [23] that $\mathrm{M}_{1}(G) \leq n(n-1)$ with equality if and only if G is the star or a Moore graph of diameter 2. The result now follows from Proposition 3 .

We mention a connection between the Harary index and the spectrum of RD. Let $\lambda(G)$ be the maximum eigenvalues of RD. Then [27]: $\lambda(G) \geq \frac{2 \mathrm{H}(\mathrm{G})}{n}$ with equality if and only if $\mathbf{R D}$ has equal row sums.

4 The Nordhaus-Gaddum-type result for the Harary index

Zhang and Wu [28] obtained the Nordhaus-Gaddum-type result for the Wiener index. In the following, we give the Nordhaus-Gaddum-type result for the Harary index. Note that for a graph G, \bar{G} stands for its complement [29]. There is only one connected graph P_{4} on 4 vertices with connected complement $\overline{P_{4}}=P_{4}$. Obviously, $\mathrm{H}\left(P_{4}\right)+\mathrm{H}\left(\overline{P_{4}}\right)=2 \mathrm{H}\left(P_{4}\right)=\frac{26}{3}$. For $n \geq 5$, the diameter of $\overline{P_{n}}$ is 2.
Lemma 5 Let G be a connected graph on $n \geq 5$ vertices with a connected \bar{G}. If \bar{G} has diameter 2, then

$$
\mathrm{H}(G)+\mathrm{H}(\bar{G}) \geq 1+\frac{(n-1)^{2}}{2}+n \sum_{k=2}^{n-1} \frac{1}{k}
$$

with equality if and only if $G=P_{n}$.
Proof Note that both \bar{G} and $\overline{P_{n}}$ have diameter 2. By Proposition 2,

$$
\begin{aligned}
\mathrm{H}(G)+\mathrm{H}(\bar{G}) & \geq \mathrm{H}\left(P_{n}\right)+\frac{m-n+1}{2}+\frac{n(n-1)}{4}+\frac{1}{2}\left[\frac{n(n-1)}{2}-m\right] \\
& =\mathrm{H}\left(P_{n}\right)+\frac{n(n-1)}{4}+\frac{1}{2}\left[\frac{n(n-1)}{2}-(n-1)\right] \\
& =\mathrm{H}\left(P_{n}\right)+\mathrm{H}\left(\overline{P_{n}}\right)
\end{aligned}
$$

with equality if and only if $\mathrm{H}(G)=\mathrm{H}\left(P_{n}\right)$, or equivalently, $G=P_{n}$.
Lemma 6 Let G be a connected graph on $n \geq 5$ vertices with a connected \bar{G}. If both G and \bar{G} have diameter 3, then $\mathrm{H}(G)+\mathrm{H}(\bar{G})>\mathrm{H}\left(P_{n}\right)+\mathrm{H}\left(\overline{P_{n}}\right)$.

Proof Let t_{k} and $\overline{t_{k}}$ be respectively the number of pairs of vertices with distance k in G and \bar{G}. Obviously, $t_{2}+t_{3}=\overline{t_{1}}, \quad \overline{t_{2}}+\overline{t_{3}}=t_{1}$ and $t_{1}+\overline{t_{1}}=\frac{n(n-1)}{2}$. Then

$$
\begin{aligned}
\mathrm{H}(G)+\mathrm{H}(\bar{G}) & =\sum_{k=1}^{3} \frac{t_{k}+\overline{t_{k}}}{k}=t_{1}+\overline{t_{1}}+\frac{1}{2}\left(t_{2}+\overline{t_{2}}+t_{3}+\overline{t_{3}}\right)-\frac{1}{6}\left(t_{3}+\overline{t_{3}}\right) \\
& =\frac{3}{2}\left(t_{1}+\overline{t_{1}}\right)-\frac{1}{6}\left(t_{3}+\overline{t_{3}}\right) \\
& =\frac{3 n^{2}-3 n}{4}-\frac{1}{6}\left(t_{3}+\overline{t_{3}}\right) .
\end{aligned}
$$

Since both G and \bar{G} have diameter $3, G$ (\bar{G}, respectively) has a spanning subgraph [29], say, $S_{p, n-p}$ ($S_{q, n-q}$, respectively), which is obtained by adding an edge between the centers of two vertex-disjoint stars S_{p} and S_{n-p} (S_{q} and S_{n-q}, respectively). It can be easily seen that

$$
t_{3}+\overline{t_{3}} \leq(p-1)(n-p-1)+(q-1)(n-q-1) \leq \frac{(n-2)^{2}}{2}
$$

Furthermore, if $n=6$, then since $t_{3}=4$ implies that $\overline{t_{3}}=1$, we have $t_{3}+\overline{t_{3}} \leq 6$, and if $n=5$, then since $t_{3}, \overline{t_{3}} \leq 2$ and $t_{3}=2$ imply that $\overline{t_{3}}=1$, we have $t_{3}+\overline{t_{3}} \leq 3$.

Let $f(G)=\mathrm{H}(G)+\mathrm{H}(\bar{G})-\left[\mathrm{H}\left(P_{n}\right)+\mathrm{H}\left(\overline{P_{n}}\right)\right]$. We need only to show that $f(G)>$ 0 . Note that

$$
\begin{aligned}
f(G) & =\frac{3 n^{2}-3 n}{4}-\frac{1}{6}\left(t_{3}+\overline{t_{3}}\right)-\left[1+\frac{(n-1)^{2}}{2}+n \sum_{k=2}^{n-1} \frac{1}{k}\right] \\
& =\frac{n^{2}+n-6}{4}-\frac{1}{6}\left(t_{3}+\overline{t_{3}}\right)-n \sum_{k=2}^{n-1} \frac{1}{k}
\end{aligned}
$$

and in particular, if $n=6$, then $f(G)=\frac{13}{10}-\frac{1}{6}\left(t_{3}+\overline{t_{3}}\right)$, and if $n=5$, then $f(G)=\frac{7}{12}-\frac{1}{6}\left(t_{3}+\overline{t_{3}}\right)$.

If $n=6$, then since $t_{3}+\overline{t_{3}} \leq 6$, we have $f(G)>0$. If $n=5$, then since $t_{3}+\overline{t_{3}} \leq 3$, we have $f(G)>0$. If $n \geq 7$, then $\sum_{k=2}^{n-1} \frac{1}{k}=\sum_{k=2}^{5} \frac{1}{k}+\sum_{k=6}^{n-1} \frac{1}{k} \leq \sum_{k=2}^{5} \frac{1}{k}+\sum_{k=6}^{n-1} \frac{1}{6}=$ $\frac{77}{60}+\frac{n-6}{6}=\frac{17}{60}+\frac{n}{6}$, and so

$$
\begin{aligned}
f(G) & =\frac{n^{2}+n-6}{4}-\frac{1}{6}\left(t_{3}+\overline{t_{3}}\right)-n \sum_{k=2}^{n-1} \frac{1}{k} \\
& \geq \frac{n^{2}+n-6}{4}-\frac{(n-2)^{2}}{12}-\left(\frac{17 n}{60}+\frac{n^{2}}{6}\right) \\
& =\frac{18 n-110}{60}=\frac{9 n-55}{30}>0
\end{aligned}
$$

This proves the result.
Proposition 7 Let G be a connected graph on $n \geq 5$ vertices with a connected \bar{G}. Then

$$
\begin{equation*}
1+\frac{(n-1)^{2}}{2}+n \sum_{k=2}^{n-1} \frac{1}{k} \leq \mathrm{H}(G)+\mathrm{H}(\bar{G}) \leq \frac{3 n(n-1)}{4} \tag{5}
\end{equation*}
$$

with left (right, respectively) equality if and only if $G=P_{n}$ or $G=\overline{P_{n}}$ (both G and \bar{G} have diameter 2, respectively).

Proof Let m and \bar{m} be respectively the number of edges of G and \bar{G}. Then $m+\bar{m}=$ $\frac{n(n-1)}{2}$. By Proposition 2,

$$
\mathrm{H}(G)+\mathrm{H}(\bar{G}) \leq 2 \cdot \frac{n(n-1)}{4}+\frac{m+\bar{m}}{2}=\frac{n(n-1)}{2}+\frac{n(n-1)}{4}=\frac{3 n(n-1)}{4}
$$

with equality if and only if both G and \bar{G} have diameter 2 .

If both G and \bar{G} have diameter 3, then by Lemma 6, $\mathrm{H}(G)+\mathrm{H}(\bar{G})>\mathrm{H}\left(P_{n}\right)+$ $\mathrm{H}\left(\overline{P_{n}}\right)$. If one of them has diameter 2 , then by Lemma 5, the left inequality in (5) follows, and equality holds if and only if $G=P_{n}$ or $G=\overline{P_{n}}$.

Let G be a connected graph on $n \geq 4$ vertices with a connected \bar{G}. Then [27]: $\lambda(G)+\lambda(\bar{G})>n$. By Proposition 7 and the connection between $\mathrm{H}(G)$ and $\lambda(G)$ mentioned above, this can be improved slightly as: $\lambda(G)+\lambda(\bar{G})>n-1+\frac{3}{n}+2 \sum_{k=3}^{n-1} \frac{1}{k}$.

Acknowledgements BZ was supported by the National Natural Science Foundation of China (Grant No. 10671076) and NT by the Ministry of Science, Education and Sports of Croatia (Grant No. 098-17704952919).

References

1. D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the characterization of chemical graphs. J. Math. Chem. 12, 235-250 (1993)
2. O. Ivanciuc, T.S. Balaban, A.T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices. J. Math. Chem. 12, 309-318 (1993)
3. O. Ivanciuc and A.T. Balaban, The graph description of chemical structures. in Topological Indices and Related Descriptors in QSAR and QSPR, ed. by J. Devillers, A.T. Balaban (Gordon \& Breach, Amsterdam, 1999), pp. 59-167
4. M.V. Diudea, M.S. Florescu, P.V. Khadikar, Molecular Topology and Its Applications (EfiCon Press, Bucharest, 2006), p. 57
5. D. Janežič, A. Miličević, S. Nikolić, N. Trinajstić, Graph Theoretical Matrices in Chemistry (Mathematical Chemistry Monographs No. 3, University of Kragujevac, Kragujevac, 2007)
6. H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Japan 44, 2332-2339 (1971)
7. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17-20 (1947)
8. O. Ivanciuc, T. Ivanciuc, A.T. Balaban, Design of topological indices. Part 10. Parameters based on electronegativity and vovalent radius for the computation of molecular graph descriptors for hetero-atom-containing molecules. J. Chem. Inf. Comput. Sci. 38, 395-401 (1998)
9. M.V. Diudea, Indices of reciprocal properties or Harary indices. J. Chem. Inf. Comput. Sci. 37, 292-299 (1997)
10. B. Lučić, A. Miličević, S. Nikolić, N. Trinajstić, Harary index-twelve years later. Croat. Chem. Acta 75, 847-868 (2002)
11. J. Devillers, A.T. Balaban (eds.), Topological Indices and Related Descriptors in QSAR and QSPR (Gordon \& Breach, Amsterdam, 1999)
12. R. Todeschini, V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000)
13. Z. Mihalić, N. Trinajstić, A graph-theoretical approach to structure-property relationships. J. Chem. Educ. 69, 701-712 (1992)
14. O. Ivanciuc, QSAR comparative study of Wiener descriptors for weighted molecular graphs. J. Chem. Inf. Comput. Sci. 40, 1412-1422 (2000)
15. B. Lučić, I. Lukovits, S. Nikolić, N. Trinajstić, Distance-related indexes in the quantitative structureproperty relationship modeling. J. Chem. Inf. Comput. Sci. 41, 527-535 (2001)
16. N. Trinajstić, S. Nikolić, S.C. Basak, I. Lukovits, Distance indices and their hyper-counterparts: Intercorrelation and use in the structure-property modeling. SAR QSAR Environ. Res. 12, 31-54 (2001)
17. E.A. Nordhaus, J.W. Gaddum, On complementary graphs. Amer. Math. Monthly 63, 175-177 (1956)
18. N. Trinajstić, Chemical Graph Theory, 2nd revised edn. (CRC press, Boca Raton, 1992)
19. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. III. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535-538 (1972)
20. S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113-124 (2003)
21. I. Gutman, K.C. Das, The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83-92 (2004)
22. B. Zhou, I. Gutman, Relationships between Wiener, hyper-Wiener and Zagreb indices. Chem. Phys. Lett. 394, 93-95 (2004)
23. B. Zhou, D. Stevanović, A note on Zagreb indices. MATCH Commun. Math. Comput. Chem. 56, 571-578 (2006)
24. I. Gutman, A property of the Wiener number and its modifications. Indian J. Chem. 36A, 128-132 (1997)
25. R.J. Wilson, Introduction to Graph Theory (Oliver \& Boyd, Edinburgh, 1972), p. 46
26. D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application (Johann Ambrosius Barth, Heidelberg, 1995)
27. B. Zhou, N. Trinajstić, On the maximum eigenvalues of the reciprocal distance matrix and the reverse Wiener matrix. Int. J. Quantum Chem. (in press)
28. L. Zhang, B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices. MATCH Commun. Math. Comput. Chem. 54, 183-194 (2005)
29. F. Harary, Graph Theory, 2nd edn. (Addison-Wesley, Reading, PA, 1971)

[^0]: Dedicated to the memory of Professor Frank Harary (1921-2005), the late grandmaster of both graph theory and chemical graph theory.
 B. Zhou (\boxtimes) • X. Cai

 Department of Mathematics, South China Normal University, Guangzhou 510631,
 People's Republic of China
 e-mail: zhoubo@scnu.edu.cn
 N. Trinajstić

 The Rugjer Bošković Institute, P. O. Box 180, Zagreb 10002, Croatia
 e-mail: trina@irb.hr

